Neural-Network-Based Gender Classification Using Genetic Search for Eigen-Feature Selection

نویسندگان

  • Zehang Sun
  • Xiaojing Yuan
  • George Bebis
  • Sushil J. Louis
چکیده

We consider the problem of gender classification from frontal facial images using feature selection and neural networks. We argue that feature selection is an important issue in gender classification and we demonstrate that by removing features that do not encode important gender information from the image representation of faces, the error rate can be reduced significantly. Automatic feature subset selection distinguishes the proposed method from previous gender classification approaches. First, Principal Component Analysis (PCA) is used to represent each image as a feature vector (i.e., eigen-features) in a low-dimensional space, spanned by the eigenvectors of the covariance matrix of the training images (i.e., coefficients of the linear expansion). A Genetic Algorithm (GA) is then used to select a subset of features from the low-dimensional representation by removing certain eigenvectors that do not seem to encode important information about gender (e.g., eigenvectors encoding information about glasses). Finally, a Neural Network (NN) is trained to perform gender classification using the selected eigen-feature subset. Experimental results demonstrate a significant improvement in error rate reduction. Using a subset of eigen-features containing only 18% of the features in the complete set, the average NN classification error goes down to 11.3% from an average error rate of 17.7%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Feature Subset Selection for Gender Classification: A Comparison Study

We consider the problem of gender classification from frontal facial images using genetic feature subset selection. We argue that feature selection is an important issue in gender classification and demonstrate that Genetic Algorithms (GA) can select good subsets of features (i.e., features that encode mostly gender information), reducing the classification error. First, Principal Component Ana...

متن کامل

Determining the effective features in classification of heart sounds using trained intelligent network and genetic algorithm

Heart diseases are among the most important causes of mortality in the world, especially in industrial countries. Using heart sounds and the features extracted from them are among the non-aggressive diagnosis and prognosis methods for heart diseases. In this study, the time-scale, Cepstral, frequency, temporal and turbulence features are saved and extracted from the heart sounds, and then they ...

متن کامل

Feature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets

Objective(s): This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. Materials and Methods: To evaluate effectiveness of proposed feature selection method, we ...

متن کامل

A Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)

Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...

متن کامل

Determining Effective Features for Face Detection Using a Hybrid Feature Approach

Detecting faces in cluttered backgrounds and real world has remained as an unsolved problem yet. In this paper, by using composition of some kind of independent features and one of the most common appearance based approaches, and multilayered perceptron (MLP) neural networks, not only some questions have been answered, but also the designed system achieved better performance rather than the pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001